Making Pre-trained Language Models Better Few-shot Learners

Advisor : Jia-Ling, Koh

Speaker: Hsiao-Ting Huang

Source: ACL'2021

Date: 2023/05/02

Outline

- Introduction
 - prompt-based fine-tuning PET

 - in-context learning from GPT-3
- Method

 - Automatic Prompt Generation Fine-tuning with Demonstrations
- Experiment
- Conclusion

Introduction:

standard fine-tuning

Introduction:

prompt-based fine-tuning

Introduction: PET

problem:Finding the right prompts, however, is an art

Introduction: Manual prompts

Template	Label words	Accuracy
SST-2 (positive/negative)		mean (std)
$<\!S_1\!>$ It was <code>[MASK]</code> .	great/terrible	92.7 (0.9)
$< S_1 > $ It was [MASK] .	good/bad	92.5 (1.0)
$\langle S_1 \rangle$ It was [MASK] .	cat/dog	91.5 (1.4)
$<\!S_1\!>$ It was [MASK] .	dog/cat	86.2 (5.4)
$< S_1 > $ It was [MASK] .	terrible/great	83.2 (6.9)
Fine-tuning	-1	81.4 (3.8)

SNLI (entailment/neutral/	mean (std)	
$<\!S_1\!>$? [MASK] $,<\!S_2\!>$	Yes/Maybe/No	77.2 (3.7)
$<\!S_1\!>$. [MASK] , $<\!S_2\!>$	Yes/Maybe/No	76.2 (3.3)
$\langle S_1 \rangle$ [MASK] $\langle S_2 \rangle$	Yes/Maybe/No	74.9 (3.0)
$\langle S_1 \rangle \langle S_2 \rangle$ [MASK]	Yes/Maybe/No	65.8 (2.4)
$\langle S_2 \rangle$ [MASK] $, \langle S_1 \rangle$	Yes/Maybe/No	62.9 (4.1)
$<\!S_1\!>$? [MASK] $,<\!S_2\!>$	Maybe/No/Yes	60.6 (4.8)
Fine-tuning		48.4 (4.8)

sentiment-classification

Natural Language Inference

Introduction: in-context learning from GPT-3

Using in-context learning of GPT-3 for machine translation.

```
Translate English to French:
                                       task description
cheese =>
                                       prompt
                                        task description
Translate English to French:
sea otter => loutre de mer
                                        examples
peppermint => menthe poivrée
plush girafe => girafe peluche
cheese =>
                                        prompt
```

problem:GPT-3 consists of 175B parameters

Outline

- Introduction

 - prompt-based fine-tuningin-context learning from GPT-3
- Method

 - Automatic Prompt Generation Fine-tuning with Demonstrations
- Experiment
- Conclusion

Automatic Prompt Generation:

Automatic selection of label words

Automatic Prompt Generation:

Automatic generation of templates

Fine-tuning with Demonstrations:

Sampling similar demonstrations

Training examples as demonstrations

$$\overline{\mathcal{T}ig(x_{ ext{in}}ig)}\oplus \overline{ ilde{\mathcal{T}}ig(x_{ ext{in}}^{(1)},y^{(1)}ig)}\oplus \cdots \oplus \overline{ ilde{\mathcal{T}}ig(x_{ ext{in}}^{(|\mathcal{Y}|)},y^{(|\mathcal{Y}|)}ig)}$$

sample from the top r = 50% instances for each class

Outline

- Introduction

 - prompt-based fine-tuning
 in-context learning from GPT-3
 PET
- Method

 - Automatic Prompt GenerationFine-tuning with Demonstrations
- Experiment
- Conclusion

Datasets-SST-2

Category	Dataset	$ \mathcal{Y} $	L	#Train	#Test	Type	Labels (classification tasks)	
	SST-2	2	19	6,920	872	sentiment	positive, negative	

sentence (string)	label (class label)
"hide new secretions from the parental units "	0 (negative)
"contains no wit , only labored gags "	0 (negative)
"that loves its characters and communicates something rather beautiful about human nature "	1 (positive)

• manual prompt:

 $< S_1 >$ It was [MASK] . positive: great, negative: terrible

• auto prompt:

$\langle S_1 \rangle$ A [MASK] one.	irresistible/pathetic
$\langle S_1 \rangle$ A [MASK] piece.	wonderful/bad
$\langle S_1 \rangle$ All in all [MASK] .	delicious/bad

Datasets-TREC

Category	Dataset	$ \mathcal{Y} $	L	#Train	#Test	Туре	Labels (classification tasks)
	TREC	6	10	5,452	500	question cls.	abbr., entity, description, human, loc., num.

text (string)	coarse_label label)		
"How did serfdom develop in and then leave Russia ?"	2 (DESC)		
"What films featured the character Popeye Doyle ?"	1 (ENTY)		
"How many points make up a perfect fivepin bowling score ?"	5 (NUM)		
"Who was the inventor of silly putty ?"	3 (HUM)		
"What is the highest waterfall in the United States ?"	4 (LOC)		
"What does the abbreviation AIDS stand for ?"	0 (ABBR)		

manual prompt:

[MASK]: $\langle S_1 \rangle$

abbreviation: Expression, entity: Entity, description: Description human: Human, location: Location, numeric: Number

auto prompt:

 \mathbf{Q} : [MASK] : $\langle S_1 \rangle$

 $\langle S_1 \rangle$ Why [MASK]?

 $\langle S_1 \rangle$ Answer: [MASK].

Application/Advisor/Discussion/Culture/Assignment/Minute

Production/AE/Context/Artist/Assignment/Minute

Personality/Advisor/Conclusion/Hum/Assignment/Minute

Datasets-MNLI

Category	Dataset	$ \mathcal{Y} $	L	#Train	#Test	Туре	Labels (classification tasks)
	TREC	6	10	5,452	500	question cls.	abbr., entity, description, human, loc., num.

sentence1	sentence2	label
"Fun for adults and children."	"Fun for only children."	2 (contradiction)
"Issues in Data Synthesis."	"Problems in data synthesis."	0 (entailment)

• manual prompt:

 $|<\!S_1\!>$? [MASK] , $|<\!S_2\!>$ entailment: Yes, netural: Maybe, contradiction: No

• auto prompt:

${<}S_1{>}$. [MASK] , you are right , ${<}S_2{>}$	Fine/Plus/Otherwise
$\langle S_1 \rangle$. [MASK] you're right $\langle S_2 \rangle$	There/Plus/Otherwise
${<}S_1{>}$. [MASK] $!{<}S_2{>}$	Meaning/Plus/Otherwise

Experiment

	SST-2 (acc)	TREC (acc)	MNLI (acc)	SNLI (acc)	RTE (acc)	MRPC (F1)
Majority [†]	50.9	18.8	32.7	33.8	52.7	81.2
Prompt-based zero-shot [‡]	83.6	32.0	50.8	49.5	51.3	61.9
"GPT-3" in-context learning	84.8 (1.3)	26.2 (2.4)	52.0 (0.7)	47.1 (0.6)	60.4 (1.4)	45.7 (6.0)
Fine-tuning	81.4 (3.8)	88.8 (2.1)	45.8 (6.4)	48.4 (4.8)	54.4 (3.9)	76.6 (2.5)
Prompt-based FT (man)	92.7 (0.9)	84.8 (5.1)	68.3 (2.3)	77.2 (3.7)	69.1 (3.6)	74.5 (5.3)
+ demonstrations	92.6 (0.5)	87.5 (3.2)	70.7 (1.3)	79.7 (1.5)	68.7 (2.3)	77.8 (2.0)
Prompt-based FT (auto)	92.3 (1.0)	88.2 (2.0)	68.3 (2.5)	77.1 (2.1)	73.9 (2.2)	76.2 (2.3)
+ demonstrations	93.0 (0.6)	89.4 (1.7)	70.0 (3.6)	77.5 (3.5)	71.1 (5.3)	78.1 (3.4)
Fine-tuning (full) [†]	95.0	97.4	89.8	92.6	80.9	91.4

Experiment - ensemble model

manual prompt

auto prompt

Prompt-based Fine-tuning	MNLI	RTE
Our single manual \mathcal{P}	68.3 (2.3)	69.1 (3.6)
$\mathcal{P}_{ ext{PET}}$	71.9 (1.5)	69.2 (4.0)
$\mathcal{P}_{\mathrm{ours}}, \mathcal{P}_{\mathrm{ours}} = \mathcal{P}_{\mathrm{PET}} $	70.4 (3.1)	73.0 (3.2)
+ demonstrations	74.0 (1.9)	71.9 (4.6)
$\mathcal{P}_{\text{ours}}, \mathcal{P}_{\text{ours}} = 20$	72.7 (2.5)	73.1 (3.3)
+ demonstrations	75.4 (1.6)	72.3 (4.5)

Table 4: Ensemble models using manual prompts from PET (Schick and Schütze, 2021a,b) and our automatic templates. PET uses 4 prompts for MNLI and 5 for RTE. We also use an equal number of templates in $|\mathcal{P}_{ours}| = |\mathcal{P}_{PET}|$ for a fair comparison.

Experiment - manual prompts vs.auto prompt

		SST-2	SNLI	TREC	MRPC
<mark>manual</mark>	Manual	92.7	77.2	84.8	74.5
<mark>prompt</mark>	Auto T	92.3	77.1	88.2	76.2
auto prompt	Auto L	91.5	75.6	87.0	77.2
	Auto $T + L$	92.1	77.0	89.2	74.0

SST-2	(positive/negative)			
Auto T	$\mathcal{M}(\mathcal{Y}) = \{\text{great, terrible}\}\$			
	#1. $< S_1 > A$ [MASK] one.			
	#2. $\langle S_1 \rangle$ A [MASK] piece.			
	#3. $\langle S_1 \rangle$ All in all [MASK] .			
Auto L	$\mathcal{T}(x_{\rm in}) = \langle S_1 \rangle$ It was [MASK].			
	#1. irresistible/pathetic			
	#2. wonderful/bad			
	#3. delicious/bad			
SNLI	(entailment/neutral/contradiction)			
Auto T	$\mathcal{M}(\mathcal{Y}) = \{\text{Yes, Maybe, No}\}$			
	#1. $< S_1 >$. [MASK] , no , $< S_2 >$			
	#2. $\langle S_1 \rangle$. [MASK] , in this case $\langle S_2 \rangle$			
	#3. $\langle S_1 \rangle$. [MASK] this time $\langle S_2 \rangle$			
Auto L	$\mathcal{T}(x_{\mathrm{in}}) = \langle S_1 \rangle$ [MASK] , $\langle S_2 \rangle$			
	#1. Alright/Watch/Except			
	#2. Hi/Watch/Worse			
	#3. Regardless/Fortunately/Unless			

Experiment - Impact of demonstration sampling strategies

Prompt-based FT (man)

random sample for each class

sample from the $\underline{top r} = 50\%$ for each class

	SST-2	SNLI	TREC	MRPC
Prompt-based FT	92.7	77.2	84.8	74.5
Uniform sampling	92.3	78.8	85.6	70.9
+ RoBERTa sel.	92.7	79.5	83.4	76.6
+ SBERT sel.	92.6	79.7	87.5	77.8

Experiment - fine-tuning vs our LM-BFF

Conclusion

- presented LM-BFF, a set of simple but effective techniques for fine-tuning language models using only a few examples
- (1) use prompt-based fine-tuning with automatically searched prompts
- (2) include selected task demonstrations (training examples) as part of the input context.